Causal Modeling with Hidden Confounders

Michèle Sebag

TAU, CNRS – INRIA – U. Paris-Saclay

IDA 2022 – Rennes

Credit for slides: David Blei, Diviyan Kalainathan
The AI wave faces a shock

Unexpected / unwanted results

- Prediction: Issues with accuracy and generality; adversarial examples, out-of-distribution pbs
- Decision: Issues with trust; this workshop.
- Intervention: Issues with efficiency

Wanted: An AI with common decency

- Fair
- Accountable
- Transparent
- Robust

The dark side of AI:

<table>
<thead>
<tr>
<th>Zeynep Tufekci</th>
<th>We’re building a dystopia just to make people click on ads</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. O’Neill</td>
<td>Weapons of Math Destruction</td>
</tr>
<tr>
<td>Timnit Gebru</td>
<td>www.technologyreview.com/2020/12/04/1013294/google-ai-ethics-research-paper-forced-out-timnit-gebru</td>
</tr>
</tbody>
</table>
The big data promise:

Knowledge \rightarrow Prediction \rightarrow Control

Savoir pour prévoir afin de pouvoir

Auguste Comte, 1798 – 1857

Tasks
- Predict
- Decide
- Intervene

If umbrellas then rain
Issues with Prediction / Robustness

When it works

Tentative interpretation

When it does not work

Perona, 2017
Using Machine Learning models out of their scope

If you can predict...

... can you make things happen?

Recommend people to eat more chocolate for the country to get more Nobel prizes.
The big data promise:

Knowledge \rightarrow Prediction \rightarrow Control

Savoir pour prévoir afin de pouvoir

Auguste Comte, 1798 – 1857

Interventions can only be based on causal models

Causal models will expectedly enable control:

- health and nutrition
- education
- economics/management
- climate
Motivations

Causal modelling

The confounders

The Deconfounder

Application to Human Resources
Causal models, formal background

Definition 1: Intervention

Intervention \(do(X = x)\) forces variable \(X\) to value \(x\)

Definition 2: Direct cause \(X_i \rightarrow X_j\)

\[
P_{X_j|do(X_i = x, X_{\backslash ij} = c)} \neq P_{X_j|do(X_i = x', X_{\backslash ij} = c)}
\]

Example

C: Cancer, S: Smoking, G: Genetic factors

\[
P(C|do\{S = 0, G = 0\}) \neq P(C|do\{S = 1, G = 0\})
\]

\[\begin{array}{ccc}
S & \rightarrow & C \\
\uparrow & & \leftarrow \\
& G \end{array}\]

\(\text{Intervention}\)
Beware!

Intervening is *not* conditioning

- Conditioning: observing what happens for smokers

- Intervening: making everyone smoke; and observing what happens
 not ethical indeed; we’ll come back to this
Causal Discovery: The royal road

Gold standard: Randomized controlled experiments

- Draw iid samples, form two subsets:
 - T=1: treatment group
 - T=0: control group
- Compute Average Treatment Effect (ATE)

Notations

- \(Y \): outcome (survival)
- \(X \): covariates (age, gender, ...)
- \(T \): treatment (0 or 1)
- \(Y_i(0) \): outcome of the i-th sample if it does not get the treatment
- \(Y_i(1) \): outcome of the i-th sample if it does get the treatment

Goal: estimate

\[
ATE = \mathbb{E}[Y(1) - Y(0)]
\]

Pb: only one out of \(Y_i(0) \) and \(Y_i(1) \) is known
Estimating ATE

Under assumptions, it works

\[ATE = \mathbb{E}[Y(1) - Y(0)] \]
\[= \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \]

linearity of expectation

\[= \mathbb{E}_X[\mathbb{E}[Y(1)|X]] - \mathbb{E}_X[\mathbb{E}[Y(0)|X]] \]

expectation over covariates
Estimating ATE

Under assumptions, it works

\[ATE = \mathbb{E}[Y(1) - Y(0)] \]
\[= \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \]

linearity of expectation

\[= \mathbb{E}_X[\mathbb{E}[Y(1)|X]] - \mathbb{E}_X[\mathbb{E}[Y(0)|X]] \]

expectation over covariates

\[= \mathbb{E}_X[\mathbb{E}[Y(1)|T=1, X]] - \mathbb{E}_X[\mathbb{E}[Y(0)|T=0, X]] \]

no hidden confounder; no unobserved common causes

overlap assumption, T=1 and T=0 are observed in the data
Estimating ATE

Under assumptions, it works

\[ATE = \mathbb{E}[Y(1) - Y(0)] \]
\[= \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \]

linearity of expectation

\[= \mathbb{E}_X[\mathbb{E}[Y(1)|X]] - \mathbb{E}_X[\mathbb{E}[Y(0)|X]] \]

expectation over covariates

\[= \mathbb{E}_X[\mathbb{E}[Y(1)|T = 1, X]] - \mathbb{E}_X[\mathbb{E}[Y(0)|T = 0, X]] \]

no hidden confounder; no unobserved common causes

overlap assumption, \(T=1 \) and \(T=0 \) are observed in the data

\[= \mathbb{E}_X[\mathbb{E}[Y|T = 1, X]] - \mathbb{E}_X[\mathbb{E}[Y|T = 0, X]] \]

*consistency: \(Y_i(1) \sim Y|T = 1, X = X_i \) \]

\(1 \)
The Simpson paradox: comparing treatments A and B of kidney stones

<table>
<thead>
<tr>
<th>Stone size</th>
<th>Treatment A</th>
<th>Treatment B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small stones</td>
<td>93% (81/87)</td>
<td>87% (234/270)</td>
</tr>
<tr>
<td>Large stones</td>
<td>73% (192/263)</td>
<td>69% (55/80)</td>
</tr>
<tr>
<td>Total</td>
<td>78% (273/350)</td>
<td>83% (289/350)</td>
</tr>
</tbody>
</table>

Despite the global figures (bottom line), treatment A dominates treatment B on both groups of patients with large and small kidney stones. This paradox is explained as treatment A, known to be more efficient by the physician, is applied more frequently on (more difficult) large kidney stones cases.
Simpson’s paradox in Covid-19 case fatality rates

Kügelgen et al., 2020

Case fatality rates (CFRs) by age group

China, 17 February
Italy, 9 March

Age

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+ Total

%
Simpson’s paradox in Covid-19 case fatality rates, 2

Proportion of confirmed cases by age group

- China, 17 February
- Italy, 9 March

Kügelgen et al., 2020
Why do we need an alternative to RCTs

- RCTs might be unethical (cannot make people smoke to see the effects)
- RCTs might be infeasible (no second planet to make experiments about climate)
- RCTs might be too costly (e.g. testing assumptions on economic rationality)
Alternative: Observational Causal Discovery

What is similar wrt ML
- Given data, infer causal models
- Challenges: data quality; data quantity; learning criterion...

What is different: Functional Causal Models (FCMs) Given X_1, \ldots, X_d,

$$X_i = f_i(X_{\text{Pa}(i; G)}, E_i), \forall i \in [1, d]$$

with
- $X_{\text{Pa}(i; G)}$ the set of parents of X_i in G (= causes of X_i),
- E_i a random independent noise variable modeling the unobserved other causes,
- f_i a deterministic function: the causal mechanism
Alternative: Observational Causal Discovery, 2

\[
\begin{align*}
X_1 &= f_1(E_1) \\
X_2 &= f_2(X_1, E_2) \\
X_3 &= f_3(X_1, E_3) \\
X_4 &= f_4(E_4) \\
X_5 &= f_5(X_3, X_4, E_5)
\end{align*}
\]

Markov decomposition

\[
P(X_1, \ldots, X_d) = \prod P(X_i | X_{\text{Pa}(i; G)})
\]
Usual Assumptions

Causal Sufficiency: no unobserved confounders

Causal Markov: all d-separations in the causal graph \mathcal{G} imply conditional independences in the observational distribution P

Causal Faithfulness: all conditional independences in P imply d-separations in \mathcal{G}.
Motivations

Causal modelling

The confounders

The Deconfounder

Application to Human Resources
Limitations

Causal models are

- less accurate, prediction-wise (usually easier to predict causes from effects than the other way round)
- data hungry
 - (variables independence tests: in d^2)
 - (variables dependency tests conditionally to another variable, in d^3)
- subject to big assumptions!
- subject to even bigger requirements!!

Assumptions

- Causal Markov / causal faithfulness
 - \equiv model distribution $==$ empirical distribution $==$ true distribution.
- No unobserved confounders
 - (remember Simpson. But confounders are all over the place).

Requirement

- Identifiability
Blocking confounders

1. The adjustment effect

Pearl 2009

\[P_m(X) = x \]
\[P_m(Z) = P(Z) \]
\[P_m(Y|X, Z) = P(Y|X, Z) \]

\[P(Y|do(X = x)) = \sum_z P(Y|x, Z = z)P(Z = z) \]
Blocking confounders, 2
2. The backdoor effect

Given an ordered pair of variables \((X, Y)\) in a directed acyclic graph \(G\), a set of variables \(Z\) satisfies the backdoor criterion relative to \((X, Y)\) if no node in \(Z\) is a descendant of \(X\), and \(Z\) blocks every path between \(X\) and \(Y\) that contains an arrow into \(X\).

\[
P(Y|\text{do}(X = x)) = \sum_{z} P(Y|x, Z = z)P(Z = z)
\]
3. The frontdoor effect

\[
P(Y|\text{do}(X = x)) = \sum_z P(Y|Z = z)P(Z = z|X = x)
\]

\[
\Pr(Y|\text{do}(X=x)) = \sum_z \Pr(Y|Z=z)\Pr(Z=z|X=x)
\]
Motivations

Causal modelling

The confounders

The Deconfounder

Application to Human Resources
Observational causal modelling in real-world problems

1. Confounders

- Known confounders: Front door and backdoor adjustments; require the causal graph to be known
- Else, assume Causal Sufficiency (no hidden confounders)

2. High dimensionality of data

- Hinders the discovery of models
- Dimensionality reduction?
- But causal relations among constructed features are questionable

3. Constructed features

- e.g. in economics: Investment, Investment / Salaries, Salaries, ...
- Inflate the causal relationships
The deconfounder

Example

- Data about movies: casts and revenue
- Goal: Understand the causal effect of putting an actor in a movie
- Causal: “What will the revenue be if we make a movie with a particular cast?”

(David Blei, Oberwolfach 2019)
Causal inference vs prediction

- James Bond movies do well
- Cast: James Bond, M, Q, Ms Moneypenny
- M, Q, Ms Moneypenny only appear in James Bond movies
- (here we have a hidden confounder: the “James Bondedness”...)

(David Blei, Oberwolfach 2019)
The deconfounder

Notations

- A_i: potential causes
- Y: outcome
- U: hidden confounders

Intuition

- Find a factor model: Z s.t.

 $$P(A_1, \ldots, A_n) = \prod_j P(A_j | Z)$$

- Z (ranging in z_1, \ldots, z_L) is “Substitute Hidden Confounder”
- Informally, when $Z = z_\ell$, hidden confounders are assumed to be constant, too...

Assumptions

- Single ignorability: no Z causing a single A_j
- (Why? If Z causes A_j that causes Y, one cannot separate the effects of Z and the effects of A_j.)
Then, the average treatment effect can be computed as

$$\mathbb{E}[Y|do(A_1 = a)] = \sum \mathbb{E}_i[Y|(A_1 = a), Z = z_i]p(Z = z_i|A)$$

Informally: conditionally to $Z = z_i$, the hidden confounders are blocked.

On-going strong debate

Damour 19, Athey et al 20, Imai et al 20, Grimmer et al. 20,…

- single ignorability untestable
- Z is not unique
- Pb if Z depends in a probabilistic way of X (this was fixed in Wang Blei 2020).
Fixing the Deconfounder

Proxy: an observed variable, child of the unobserved confounder

Null Proxy: proxy with no effect on the outcome.

Set of \(m \) treatments \(A_1 \ldots A_m \), with a shared confounder \(U \), partitioned into

- \(A_C \): treatments on which we intervene
- \(A_X \): treatments on which we don’t intervene, used as proxy
- \(A_N \): a set of treatments with \(Y \perp f(A_N) | U, A_C, A_X \)
Fixing the Deconfounder

Wang and Blei, 2021

An intervention distribution is identifiable iff it can be written as a function of the observed distribution.

Theorem

▶ If exists \(f(A_N) \) s.t. \(Y \perp \perp f(A_N)|U, A_C, A_X \)

▶ \(P(u|a_C, f(a_N)) \) complete in \(f(a_N) \) for almost all \(a_C \)

▶ \(P(f(a_N)|a_C, a_X) \) complete in \(a_X \) for almost all \(a_C \)

Then

\[
P(y|do(a_C)) = \int h(y, a_C, a_X)P(a_X)da_X
\]

for \(h \) s.t.

\[
P(y|a_C, f(a_N)) = \int h(y, a_C, a_X)P(a_X|a_C, f(a_N))da_X
\]

Definition

\(P(x|y, z) \) complete wrt \(z \) iff for any square integrable \(g \) function,

\[
\int g(x, y)P(x|y, z)dx = 0 \text{ for almost all } z \Rightarrow g(x, y) = 0 \text{ for almost all } x
\]
Motivations

Causal modelling

The confounders

The Deconfounder

Application to Human Resources
Enquete Emploi

Statistical survey of the labor market

- Each EU member transmits the survey every 3 months to Eurostat
- Years 2017-2018: 110,945 individuals (1.5 year trajectories)
- Selected: unemployed people (5,009)

Features: 720

- age (average 39)
- gender (49% women),
- immigrant (16%)
- approximate income
- family status
- category of home location (12% in Quartier Prioritaire)
- health,
- level of studies (19% > bacalaureat)
- search for jobs through: Public Agencies, Interim Agencies, social networks, etc
Counterfactual effects of features

The scientific question
Learn a causal model $P(\text{finding.a.job})$.
How would this probability be modified if I were a woman, an immigrant, if I search a job primarily with a public agency, or my social network, or...

The methodology
- Pre-processing the data (most features are binary)
- Build P using Bayesian Logistic Regression
- Check the assumptions.

Caveat Variability
Counterfactual effects of features

Results

<table>
<thead>
<tr>
<th>Feature</th>
<th>ATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>is single</td>
<td>-12.2</td>
</tr>
<tr>
<td>parents not immigrants</td>
<td>2.19</td>
</tr>
<tr>
<td>not immigrant</td>
<td>6.49</td>
</tr>
<tr>
<td>no child in house</td>
<td>3.15</td>
</tr>
<tr>
<td>is woman</td>
<td>0.86</td>
</tr>
<tr>
<td>is from DOM</td>
<td>-16.9</td>
</tr>
<tr>
<td>lives in a sensitive urban area</td>
<td>3.02</td>
</tr>
<tr>
<td>lives in prioritary neighborhood</td>
<td>-6.56</td>
</tr>
<tr>
<td>asked to public agency</td>
<td>4.58</td>
</tr>
<tr>
<td>asked to interim agency</td>
<td>10.89</td>
</tr>
<tr>
<td>asked to relatives</td>
<td>2.33</td>
</tr>
<tr>
<td>asked to colleagues</td>
<td>3.80</td>
</tr>
<tr>
<td>asked on social networks</td>
<td>0.27</td>
</tr>
<tr>
<td>took a public exam</td>
<td>6.52</td>
</tr>
<tr>
<td>spontaneously application</td>
<td>4.87</td>
</tr>
<tr>
<td>published a classified ad</td>
<td>-2.20</td>
</tr>
<tr>
<td>answered a job offer</td>
<td>9.34</td>
</tr>
<tr>
<td>other methods</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Limitations

- Data preparation
- Model stability
- Interpretations
- Setting: choice of means (combinatorial treatment)

As usual: confirm with field experiments.
Conclusion

Causal modelling

▶ The most exciting game!
▶ A most slippery game :-(
▶ When everything fails, use common sense
Perspectives

The bottlenecks

- Find a causal graph (d^3 independency tests)
- Data-hungry task !
- The causal ladder:
 - Predict
 - What if
 - What if not

On-going

- Structure-Agnostic Model
- We need changing representations
- How to enforce identifiability ?
- Generalized contrastive losses

Kalainathan et al. 22
Hyvarinen et al. 2019